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Exercice 1 : Le principe d’incertitude de Heisenberg

Soit un électron en orbite à une distance r d’un proton. La force électrostatique est la source
du MCU. Ainsi,

mv2

r
=

e2

4πε0r2

et donc
p = mv =

e
√
m√

4πε0r
.

Par ailleurs, le principe d’incertitude d’Heisenberg nous donne : ∆x∆p ≥ ~
2
. L’incertitude sur

l’espace, ∆x, correspond à la taille caractéristique du nuage électronique autourant le noyau et dans
lequel se situe l’électron. Physiquement, le rayon moyen de la position de l’électron et le rayon de
ce nuage sont du même ordre de grandeur, si bien que ∆x ∼ r. D’autre part, le confinement de
l’électron, sur lequel repose la stabilité de l’atome, est assuré seulement si la quantité de mouvement
de l’électron ne prend pas de valeurs excessives. Nous avons donc une condition légèrement plus
forte sur l’impulsion : p ≥ ∆p. Combinant les différentes identités que nous avons obtenues, nous
avons donc r ≥ πε0~2

me2
∼= 1.3 · 10−11m.

Cette estimation est en fait proche à un facteur près de a0 = 4πε0~2
me2

, appelé rayon de Bohr, qui
une très bonne approximation du véritable rayon moyen de l’atome d’hydrogène.

Exercice 2 : Principe d’incertitude dans l’expérience de Young

1. Soient l1 et l2 les chemins passant respectivement par la fente 1 et 2. En définissant l’origine
de l’axe x au milieu des deux fentes, on a relie les différentes quantités en jeu :

l1 cos θ1 = d l1 sin θ1 = x− a

2
(1)

l2 cos θ2 = d l2 sin θ2 = x+
a

2
(2)
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Comme nous considérons l’approximation de faible déviation (i.e. θ1, θ2 � 1), les relations
précédentes peuvent être développées jusqu’au deuxième ordre et être approximées par :

l1

(
1− θ2

1

2

)
= d l1θ1 = x− a

2
(3)

l2

(
1− θ2

2

2

)
= d l2θ2 = x+

a

2
(4)

On veut maintenant trouver la distance entre deux maxima de la distribution de probabilité
sur la paroi. Pour ce faire, considérons que les deux fonctions d’ondes ψ1(x) = eikl1(x) et
ψ2(x) = eikl2(x). Le principe de superposition nous dit que la fonction d’onde résultante est la
somme des fonctions d’onde. On a alors que la distribution de probabilité est donnée par :

|ψ1(x) + ψ2(x)|2 = |ψ1(x)|2 + |ψ2(x)|2 + 2 Re{ψ1(x)ψ?2(x)} ∝
∝ 1 + Re{exp[−ik(l2 − l1)]} =

∝ 1 + cos[k(l2 − l1))]

(5)

Notez qu’avec l(x) nous faisons référence à la longueur du trajet parcouru par les ondes entre
la source et la position x. Puisque nous nous intéressons à la superposition des deux fonctions
au même point x, nous omettrons la dépendance pour des raisons de clarté. Ainsi, l1 et l2
font référence aux trajets parcourus par les ondes des deux sources jusqu’à un point commun x.

On voit donc que les maxima de |ψ(x)|2 apparaissent lorsque k(l2 − l1) = 2πN avec N ∈ Z.
La distance entre deux maxima est donc donnée par la condition :

l2 − l1 = λ où λ =
2π

k
(6)

En utilisant les expressions de gauche de (3) et (4), cette condition se réécrit aisément :

l2 − l1 ' d

(
1

1− θ2
2

− 1

1− θ2
1

)
' d

2
(θ2

2 − θ2
1) = λ, (7)

où nous avons développé 1/(1− x) en 1 + x pour de petites valeurs de x.
En utilisant maintenant les expressions de droite de (3) et (4), on obtient :

d

2

[(
x+ a

2

)2

l21
−
(
x− a

2

)2

l22

]
= λ

A l’ordre le plus bas en θi, on peut approximer 1/l2i par :

1

l2i
=

(1− θ2
i /2)2

d2
' 1

d2

On trouve donc finalement que la distance x entre deux maxima est donnée par :

xint '
λd

a
(8)
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2. L’impulsion transférée à la plaque dépend de la fente par laquelle le photon est passé : s’il
est passé par la fente 1 alors la quantité de mouvement transférée est p1 = −hν

c
sin θ1 alors

que s’il est passé par la seconde fente la quantité de mouvement serait p2 = −hν
c

sin θ2. La
différence est donc donnée par :

|p2 − p1| =
hν

c
| sin θ2 − sin θ1| (9)

3. Si l’on veut pouvoir discriminer entre p1 et p2, il faut que notre incertitude sur l’impulsion
verticale de la plaque ∆p satisfasse :

∆p� |p2 − p1| (10)

Par le principe d’incertitude de Heisenberg, l’incertitude correspondante sur la position de la
plaque est :

∆x ≥ ~
2∆p

� ~
2|p2 − p1|

(11)

Pour de petites déviations (i.e. θ1, θ2 � 1), on trouve en utilisant à nouveau les relations de
gauche de (3) et (4) :

|p2 − p1| '
hν

c
|θ2 − θ1| '

ha

λd
(12)

L’incertitude sur la position si l’on veut être capable de discriminer par quelle fente le photon
est passé est donc caractérisée par :

∆x� 1

4π

λd

a
=

1

4π
xint (13)

On trouve donc que la position des fentes 1 et 2 est définie avec une incertitude supérieure
à l’interfrange : on ne peut donc pas observer d’interférence. Il faut se souvenir que pour
obtenir une description cohérente du système, il faut appliquer la mécanique quantique à
tous les systèmes en jeu !

Exercice 3 : Probabilité de mesurer la position 1

Cet exercice est un problème purement calculatoire. Il faut se souvenir de la condition de
normalisation, qui exprime le fait que l’électron doit être quelque part entre moins l’infini et l’infini
(c’est-à-dire, il existe dans notre système) avec probabilité 1. Donc, l’intégrale du module1 de la
fonction d’onde au carré (qui nous donne la probabilité) sur tout le domaine doit être égale à un :∫ +∞

−∞
|ψ(x)|2dx = 1

En calculant cette intégrale, nous pouvons trouver la constante de normalisation A :∫ +∞

−∞
ψ2(x)dx = A2

∫ +∞

−∞

1

1 + k2x2
dx =

A2

k

∫ +∞

−∞

1

1 + (kx)2
d(kx) =

A2

k
arctan(kx)

∣∣∣∣∣
+∞

−∞

=
A2π

k
= 1
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et donc :

A2 =
k

π
⇒ A =

√
k

π

Nous pouvons maintenant passer aux calculs suivants :
1. La position moyenne est définie comme (c’est l’espérance statistique de x) :

〈x〉 =

∫ +∞

−∞
xψ2(x)dx

Un calcul direct demande de l’attention :

〈x〉 =

∫ +∞

−∞
xψ2(x)dx =

k

π

∫ +∞

−∞

x

1 + k2x2
dx.

La primitive de cette fonction est un logarithme naturel, qui diverge pour des valeurs de x
qui tendent vers l’infini. Il faut donc prendre la limite

∫ +∞

−∞

x

1 + k2x2
dx =

k

π

1

2k2
ln (1 + k2x2)

∣∣∣∣∣
+∞

−∞

→ 0

Donc
〈x〉 = 0

Pour répondre à cette question, on peut aussi tout simplement remarquer que la fonction
d’onde est symétrique autour de x = 0.

2. Pour trouver la position x la plus probable, il faut calculer le maximum de ψ2(x) :

dψ2(x)

dx
= A2 d

dx
(

1

1 + k2x2
) = −k

π

2k2x

(1 + k2x2)
= 0

⇒ x = 0

Pour vérifier qu’il s’agit bien d’un maximum, on prend la deuxième dérivée :

d2ψ2(x)

dx2
= −k

π

2k2(1 + k2x2)− 4k4x2

(1 + k2x2)3
⇒ x = 0 :

d2ψ2(x = 0)

dx2
= −2k3

π
< 0

La deuxième dérivée négative, x = 0 est donc bien un maximum, donc la position la plus
probable.

3. On veut trouver les zéros de la fonction d’onde, car la densité de probabilité est donnée par :

p(x) = ψ2(x)

On doit résoudre :
ψ2(x) = 0⇒ ψ(x) = 0

Dans le cas de notre fonction d’onde,il n’y a pas de valeurs de x où la fonction est zéro.
On peut toutefois dire que la probabilité de trouver l’électron à l’infini est nulle, c’est-à-dire
pour x = ±∞
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La probabilité de trouver l’électron sur un intervalle x ∈ [a, b] quelconque est :∫ b

a

ψ2(x)dx = p[a,b].

Dans notre cas, l’intervalle est x ∈ [−1, 1] et nous savons que la probabilité d’y trouver l’électron
vaut p = 1/4
Nous pouvons donc simplement procéder à l’intégration pour ensuite isoler k :∫ 1

−1

ψ2(x)dx =
k

π

∫ 1

−1

1

1 + k2x2
dx =

1

π
arctan kx

∣∣∣∣∣
1

−1

=
2

π
arctan k = 1/4

⇒ k = tan
π

8
= 0.414

Exercice 4 : Probabilité de mesurer la position 2

1. Pour la normalisation de la fonction d’onde nous avons :∫ 1

0

ψ2(x)dx = A2

∫ 1

0

(x− 2x3/2 + x2)dx = A2(
x2

2
− 4

5
x5/2 +

x33

)

∣∣∣∣∣
1

0

= A2/30 = 1

, donc : A2 = 30, A = 5.48

2. La position moyenne 〈x〉 est donnée par l’expression 〈x〉 =
∫∞

0
xψ2(x)dx, donc :

〈x〉 =

∫ 1

0

xψ2(x)dx = 30

∫ 1

0

(x2 − 2x5/2 + x3)dx = 30(
x3

3
− 4

7
x7/2 +

x4

4
)

∣∣∣∣∣
1

0

= 30/84 = 0.357

3. Pour 〈x2〉 nous obtenons

〈x2〉 =

∫ 1

0

x2ψ2(x)dx = 30

∫ 1

0

(x3 − 2x7/2 + x4)dx = 30(
x4

4
− 4

9
x9/2 +

x5

5
)

∣∣∣∣∣
1

0

= 30/180 = 1/6

4. La position la plus probable correspond au maximum de ψ2(x) ou, ici, tout simplement au
maximum de −ψ(x) parce que ψ(x) ≤ 0 partout
donc il s’agit de x = 1/4

5. Les positions où la probabilité de trouver l’électron est égale à zéro sont x = 0 et x = 1

6. la probabilité que l’électron se trouve cette région est donnée par

P =

∫ 1/2

0

ψ2(x)dx = 30

∫ 1/2

0

(x− 2x3/2 + x2)dx = 30(
x2

2
− 4

5
x5/2 +

x3

3
)

∣∣∣∣∣
1/2

0

= 0.76

Exercice 5 : Question de type examen
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2. Il suffit d’appliquer le principe d’incertitude de Heisenberg avec ∆p = m∆v.
Comme m ∼ 10−31 kg et ∆v ∼ 103 m/s, alors ∆p = m∆v ∼ 10−29 kg · m/s. De la relation
d’incertitude, en utilisant ~ ∼ 10−34 kg · m2/s2, nous obtenons que ∆x ≥ ~

2∆p
∼ 10−5 m.

Puisque l’incertitude initiale était ∆x ∼ 10−10 m, la réponse correcte serait B : l’incertitude
augmente.

Notez qu’il y a une hypothèse non triviale dans cet exercice. L’incertitude dans la relation
de Heisenberg est une propriété intrinsèque de l’état décrivant notre système quantique. Ici,
nous supposons que l’état post-mesure est décrit par une incertitude égale à celle du dispositif
(en d’autres termes, changer de dispositif changerait l’incertitude de l’état quantique). Bien
que cela ne soit généralement pas le cas et qu’il s’agisse simplement d’une simplification,
cela revient à supposer que la mesure projette l’état du système sur un état qui a la même
incertitude que celle du dispositif.
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